de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fluoride-dependent conversion of organic compounds mediated by manganese peroxidases in the absence of Mn2+ Ions

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4189

Spiteller,  Dieter
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons3812

Boland,  Wilhelm
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ye, L., Spiteller, D., Ullrich, R., Boland, W., Nueske, J., & Diekert, G. (2010). Fluoride-dependent conversion of organic compounds mediated by manganese peroxidases in the absence of Mn2+ Ions. Biochemistry, 49(34), 7264-7271. doi:10.1021/bi100831w.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-70B2-1
Abstract
Manganese peroxidase generally mediates the oxidation of Mn2+ to Mn3+ with H2O2 as an oxidant. Several manganese peroxidases purified from different lignin-degrading fungi were found to mediate a fluoride-dependent conversion of organic substrates such as monochlorodimedone or 2,6-dimethoxyphenol in the absence of manganese ions. Using the manganese peroxidase MnP-1 from Bjerkandera adusta strain lid I, these fluoride-dependent reactions were studied with respect to different substrates converted, reaction products, and kinetic properties to shed some light on the reaction mechanism of manganese peroxidase. The analysis of the reaction products formed from monochlorodimedone and 2,6-dimethoxyphenol showed that the substrates were oxidized rather than fluorinated. The addition of fluoride to MnP-1 resulted in altered absorption spectra, indicating a coordinative binding of fluoride or HF to the heme iron; the fluoride:heme stoichiometry was determined to be 1:1 and the K-D value to be similar to 2.5 in M at pH 3.4. The high K-D value indicates weak binding of fluoride to the heme. Fluoride appeared to act as a partially competitive inhibitor with respect to hydrogen peroxide for binding to the heme as the sixth ligand. From the findings, a putative model for the fluoride-dependent reaction was developed. The data were interpreted to indicate that changes of the reaction center of manganese peroxidase as, for example, caused by fluoride binding may lead to the oxidation of organic compounds in the absence of manganese by opening a long-range electron transfer pathway.