de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A microiterative intrinsic reaction coordinate method for large QM/MM systems

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons58894

Polyak,  Iakov
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons58452

Boulanger,  Eliot
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons58994

Sen,  Kakali
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Polyak, I., Boulanger, E., Sen, K., & Thiel, W. (2013). A microiterative intrinsic reaction coordinate method for large QM/MM systems. Physical Chemistry Chemical Physics, 15(34), 14188-14195. doi:10.1039/C3CP51669E.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A347-2
Zusammenfassung
Intrinsic reaction coordinate (IRC) computations are a valuable tool in theoretical studies of chemical reactions, but they can usually not be applied in their current form to handle large systems commonly described by quantum mechanics/molecular mechanics (QM/MM) methods. We report on a development that tackles this problem by using a strategy analogous to microiterative transition state optimization. In this approach, the IRC equations only govern the motion of a core region that contains at least the atoms directly involved in the reaction, while the remaining degrees of freedom are relaxed after each IRC step. This strategy can be used together with any existing IRC procedure. The present implementation covers the stabilized Euler, local quadratic approximation, and Hessian predictor–corrector algorithms for IRC calculations. As proof of principle, we perform tests at the QM level on small gas-phase systems and validate the results by comparisons with standard IRC procedures. The broad applicability of the method is demonstrated by IRC computations for two enzymatic reactions using standard QM/MM setups.