Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage

MPG-Autoren
/persons/resource/persons98253

Griewank,  Philipp J.
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37281

Notz,  Dirk
Max Planck Research Group The Sea Ice in the Earth System, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

jgrc20247.pdf
(Verlagsversion), 839KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Griewank, P. J., & Notz, D. (2013). Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. Journal of Geophysical Research: Oceans, 118, 3370-3386. doi:10.1002/jgrc.20247.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-69FD-7
Zusammenfassung
We study gravity drainage using a new 1-D, multiphase sea ice model. A parametrization of gravity drainage based on the convective nature of gravity drainage is introduced, whose free parameters are determined by optimizing model output against laboratory measurements of sea ice salinity evolution. Optimal estimates of the free parameters as well as the parametrization performance remain stable for vertical grid resolutions from 1 to 30 mm. We find a strong link between sea ice growth rate and bulk salinity for constant boundary conditions but only a weak link for more realistic boundary conditions. We also demonstrate that surface warming can trigger brine convection over the whole ice layer. Over a growth season, replacing the convective parametrization with constant initial salinities leads to an overall 3% discrepancy of stored energy, thermal resistance, and salt release. We also derive from our convective parametrization a simplified, numerically cheap and stable gravity-drainage parametrization. This parametrization results in an approximately 1% discrepancy of stored energy, thermal resistance, and salt release compared to the convective parametrization. A similarly low discrepancy to our complex parametrization can be reached by simply prescribing a depth-dependent salinity profile. ©2013. American Geophysical Union. All Rights Reserved.