日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

CO Oxidation Over Monolayer Manganese Oxide Films on Pt(111)

MPS-Authors
/persons/resource/persons21849

Martynova,  Yulia
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1841070.pdf
(全文テキスト(全般)), 999KB

付随資料 (公開)
There is no public supplementary material available
引用

Martynova, Y., Soldemo, M., Weissenrieder, J., Sachert, S., Polzin, S., Widdra, W., Shaikhutdinov, S. K., & Freund, H.-J. (2013). CO Oxidation Over Monolayer Manganese Oxide Films on Pt(111). Catalysis Letters, 143(11), 1108-1115. doi:10.1007/s10562-013-1117-0.


引用: https://hdl.handle.net/11858/00-001M-0000-0014-69C3-7
要旨
Ultrathin manganese oxide films grown on Pt(111) were examined in the low temperature CO oxidation reaction at near atmospheric pressures. Structural characterization was performed by X-ray photoelectron spectroscopy, Auger electron spectroscopy, high-resolution electron energy loss spectroscopy, and temperature programmed desorption. The results show that the reactivity of MnOsub>x</sub> ultrathin films is governed by a weakly bonded oxygen species, which may even be formed at low oxygen pressures (~10−6 mbar). For stable catalytic performance at realistic conditions the films required highly oxidizing conditions (CO:Osub>2</sub> < 1:10), otherwise the films dewetted, ultimately resulting in the catalyst deactivation. Comparison with other thin films on Pt(111) shows, that the desorption temperature of weakly bonded oxygen species can be used as a benchmark for its activity in this reaction.