de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78085

Hein,  Marco Y.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hirst, J., Borner, G. H. H., Edgar, J., Hein, M. Y., Mann, M., Buchholz, F., et al. (2013). Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. MOLECULAR BIOLOGY OF THE CELL, 24(16), 2558-2569. doi:10.1091/mbc.E13-03-0170.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6857-3
Abstract
The AP-5 complex is a recently identified but evolutionarily ancient member of the family of heterotetrameric adaptor proteins (AP complexes). It is associated with two proteins that are mutated in patients with hereditary spastic paraplegia, SPG11 and SPG15. Here we show that the four AP-5 subunits can be coimmunoprecipitated with SPG11 and SPG15, both from cytosol and from detergent-extracted membranes, with a stoichiometry of similar to 1:1:1:1:1:1. Knockdowns of SPG11 or SPG15 phenocopy knockdowns of AP-5 subunits:all six knockdowns cause the cation-independent mannose 6-phosphate receptor to become trapped in clusters of early endosomes. In addition, AP-5, SPG11, and SPG15 colocalize on a late endosomal/lysosomal compartment. Both SPG11 and SPG15 have predicted secondary structures containing alpha-solenoids related to those of clathrin heavy chain and COPI subunits. SPG11 also has an N-terminal, beta-propeller-like domain, which interacts in vitro with AP-5. We propose that AP-5, SPG15, and SPG11 form a coat-like complex, with AP-5 involved in protein sorting, SPG15 facilitating the docking of the coat onto membranes by interacting with PI3P via its FYVE domain, and SPG11 (possibly together with SPG15) forming a scaffold.