Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

The g-factor of the valence electron bound in lithiumlike silicon 28Si11+: The most stringent test of relativistic many-electron calculations in a magnetic field

MPG-Autoren
/persons/resource/persons31151

Wagner,  Anke
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Anke_A_Wagner_PhD-thesis.pdf
(beliebiger Volltext), 12MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wagner, A., & Blaum, K. (2013). The g-factor of the valence electron bound in lithiumlike silicon 28Si11+: The most stringent test of relativistic many-electron calculations in a magnetic field. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-68A2-C
Zusammenfassung
Within this thesis the g-factor of the valence electron bound in lithiumlike silicon 28Si11+ has been measured with a relative precision of δg/g = 1.1 • 10−9. The determination of the g-factor is based on a measurement of the free cyclotron and the Larmor frequency of a single ion stored in a triple Penning trap setup. The free cyclotron frequency is determined from the non-destructive measurement of the eigenfrequencies of the trapped ion. To determine the Larmor frequency the continuous Stern-Gerlach effect is employed, which couples the spin orientation to the axial mode. Thus, a spin flip manifests as a tiny frequency jump of the axial frequency. The implementation of dedicated stabilization systems for temperature and magnetic field minimized environmental influences on the ion. The presented result gexp= 2.000 889 889 9(21) constitutes the most precise g-factor measurement of a three-electron system to date. It is in excellent agreement with the theoretical prediction gtheo = 2.000 889 909(51) and confirms the relativistic many electron calculations at the level of 10−4. Since the sensitivity of this test is limited by the theoretical value, which is more than order of magnitude less precise than the experimental result, any further improvement of the theoretical uncertainty will directly improve the test of the relativistic many-electron calculations.