de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Preserving Neural Function under Extreme Scaling

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons38794

Cuntz,  Hermann
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons38838

Forstner,  Friedrich
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons39057

Schnell,  Bettina
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons98401

Ammer,  Georg
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons39033

Raghu,  Shamprasad Varija
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons38770

Borst,  Alexander
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

journal.pone.0071540.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cuntz, H., Forstner, F., Schnell, B., Ammer, G., Raghu, S. V., & Borst, A. (2013). Preserving Neural Function under Extreme Scaling. PLOS ONE, 8(8): e71540. doi:10.1371/journal.pone.0071540.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-65BA-C
Zusammenfassung
Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.