Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonlinear absorption and density-dependent dephasing in Rydberg electromagnetically-induced-transparency media

MPG-Autoren
/persons/resource/persons37683

Gärttner,  Martin
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany;

/persons/resource/persons30455

Evers,  Jörg
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gärttner, M., & Evers, J. (2013). Nonlinear absorption and density-dependent dephasing in Rydberg electromagnetically-induced-transparency media. Physical Review A, 88(3): 033417. doi:10.1103/PhysRevA.88.033417.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-5DF0-A
Zusammenfassung
Light propagation through an ensemble of ultracold Rydberg atoms in an electromagnetically-induced-transparency (EIT) configuration is studied. In strongly interacting Rydberg EIT media, nonlinear optical effects lead to a nontrivial dependence of the degree of probe-beam attenuation on the medium density and on its initial intensity. We develop a Monte Carlo rate equation model that self-consistently includes the effect of the probe-beam attenuation to investigate the steady state of the Rydberg medium driven by two laser fields. We compare our results to recent experimental data and to results of other state-of-the-art models for light propagation in Rydberg EIT media. We find that for low probe field intensities, our results match the experimental data best if a density-dependent dephasing rate is included in the model. At higher probe intensities, our model deviates from other theoretical approaches, because it predicts a spectral asymmetry together with line broadening. These are likely due to off-resonant excitation channels, which, however, have not been observed in recent experiments. Atomic motion and coupling to additional Rydberg levels are discussed as possible origins for these deviations.