de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78355

Mann,  Karlheinz
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1477-5956-11-40.pdf
(Any fulltext), 965KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mann, K., & Mann, M. (2013). The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. PROTEOME SCIENCE, 11: 40. doi:10.1186/1477-5956-11-40.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-5BB9-9
Abstract
Background: Chicken eggshell mineralization is a prominent model for biomineralization not only because of its importance for avian reproduction but also because of the commercial interest associated with eggshell quality. An analysis and comparison of the protein constituents of eggshells of several species would contribute to a better understanding of the shell mineralization process. The recent publication of the turkey genome sequence now provides a basis for the in-depth analysis of the turkey eggshell proteome. Results: Proteomic analysis of turkey acid-soluble and acid-insoluble organic eggshell matrix yielded 697 identified proteins/protein groups. However, intensity-based absolute quantification (iBAQ) results indicated that the 47 most abundant identified proteins already constituted 95% of the total turkey eggshell matrix proteome. Forty-four of these proteins were also identified in chicken eggshell matrix previously. Despite these similarities there were important and unexpected differences. While ovocleidin-116 and ovocalyxin-36 were major proteins constituting approximately 37% of the identified proteome, other members of the group of so-called eggshell-specific proteins were not identified. Thus ovocalyxin-21 and ovocalyxin-32 were missing among matrix proteins. Conversely, major turkey eggshell proteins were not detected in chicken, such as the bone protein periostin, the mammalian counterpart of which is involved in many aspects of bone metabolism and which represented 10-11% of the total identified proteome. Conclusions: Even members of the same avian family show important differences in eggshell matrix composition and more studies on the proteome and the transcriptome level will be necessary to identify a common toolkit of eggshell mineralization and to work out species differences among functional eggshell protein sets and their role in eggshell production.