de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons103121

Raschdorf,  Oliver
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78517

Plitzko,  Jürgen M.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Raschdorf, O., Mueller, F. D., Posfai, M., Plitzko, J. M., & Schueler, D. (2013). The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. MOLECULAR MICROBIOLOGY, 89(5), 872-886. doi:10.1111/mmi.12317.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-5BDC-C
Zusammenfassung
Magnetospirillum gryphiswaldense uses intracellular chains of membrane-enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome-associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c-binding magnetochrome domains, and deletion of either mamZ or its C-terminal ferric reductase-like component resulted in an identical phenotype. All mutants displayed WT-like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake-like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of mamX and mamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from mamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.