de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Database Techniques for Linked Data Management

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44645

Hose,  Katja
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45380

Schenkel,  Ralf
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Harth, A., Hose, K., & Schenkel, R. (2012). Database Techniques for Linked Data Management. In SIGMOD 2012 (pp. 597-600). New York, NY: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-5F95-8
Zusammenfassung
Linked Data refers to data published in accordance with a number of principles rooted in web standards. In the past few years we have witnessed a tremendous growth in Linked Data publishing on the web, leading to tens of billions of data items published online. Querying the data is a key functionality required to make use of the wealth of rich interlinked data. The goal of the tutorial is to introduce, motivate, and detail techniques for querying heterogeneous structured data from across the web. Our tutorial aims to introduce database researchers and practitioners to the new publishing paradigm on the web, and show how the abundance of data published as Linked Data can serve as fertile ground for database research and experimentation. As such, the tutorial focuses on applying database techniques to processing Linked Data, such as optimized indexing and query processing methods in the centralized setting as well as distributed approaches for querying. At the same time, we make the connection from Linked Data best practices to established technologies in distributed databases and the concept of Dataspaces and show differences as well as commonalities between the fields.