Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse





XUV-IR pump-probe experiments : exploring nuclear and electronic correlated quantum dynamics in the hydrogen molecule


Sperl,  Alexander Georg
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

There are no locators available
Fulltext (public)

(Any fulltext), 19MB

Supplementary Material (public)
There is no public supplementary material available

Sperl, A. G. (2013). XUV-IR pump-probe experiments: exploring nuclear and electronic correlated quantum dynamics in the hydrogen molecule. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Cite as:
Wave packet dynamics and autoionization of doubly excited states in molecules can be studied by combining an intense, short-pulse infrared (IR) laser and a extreme ultraviolet (XUV) source with a Reaction Microscope, which allows for coincident measurements of ions and electrons. Furthermore, this detection system is capable of measuring the three dimensional momentum of each charged particle involved in the ionization process. This technique was used to investigate the autoionization of doubly excited H2 molecules, a process that occurs on a timescale of a few femtoseconds. Since this reaction time is of the order of the molecular motion, the nuclei can no longer be regarded as stationary. The coupling of the dissociation dynamics of H2+ to the corresponding electron, which is emitted through the autoionization of doubly excited states, leads to a symmetry breaking in the dissociation. In the conducted measurements, this translates into a localization of coincident electron-ion pairs. In order to study the temporal dynamics of these processes, the molecules were further probed with delayed IR pulses, revealing dynamics within the autoionization.