de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Temperature dependence of the 2-butene hydrogenation over supported Pd nanoparticles and Pd(111)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons22053

Savara,  Aditya Ashi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21827

Ludwig,  Wiebke
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons32692

Dostert,  Karl-Heinz
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22062

Schauermann,  Swetlana
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Savara, A. A., Ludwig, W., Dostert, K.-H., & Schauermann, S. (2013). Temperature dependence of the 2-butene hydrogenation over supported Pd nanoparticles and Pd(111). Journal of Molecular Catalysis A: Chemical, 377, 137-142. doi:10.1016/j.molcata.2013.04.015.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-5553-A
Zusammenfassung
The activity and induction times for 2-butene hydrogenation have been investigated over a Pd(1 1 1) single crystal surface and model Pd nanoparticles supported on Fe3O4/Pt(1 1 1) by isothermal pulsed molecular beam experiments, in the temperature range of 220–340 K. C-modification of supported Pd particles induced persistent hydrogenation activity at low temperatures (220–260 K). C-modification of the Pd(1 1 1) surface, in contrast, did not result in significant reactivity changes. At low temperatures (220–260 K), hydrogenation activity was only maintained over the C-modified Pd particles, while at temperatures (≥280 K) persistent hydrogenation was observed over all Pd catalysts at comparable rates. Two principal reaction mechanisms are discussed that could be responsible for the observed hydrogenation activity at different Pd surfaces. We show that on Pd nanoparticles, the reaction mechanism involving subsurface hydrogen species plays an important role under all investigated conditions. This subsurface-related reaction pathway relies on an effective replenishment of the subsurface hydrogen reservoir, which is affected by the presence of strongly adsorbed hydrocarbon species that are formed in the induction period. We discuss the correlation between the induction times and the hydrogenation activity of different Pd surfaces.