de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Small Platinum Cluster Hydrides in the Gas Phase

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21709

Kerpal,  Christian
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21601

Harding,  Daniel J.
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21506

Fielicke,  André
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Institut für Optik und Atomare Physik, Technische Universität Berlin;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kerpal, C., Harding, D. J., Rayner, D. M., & Fielicke, A. (2013). Small Platinum Cluster Hydrides in the Gas Phase. The Journal of Physical Chemistry A, 117(34), 8230-8237. doi:10.1021/jp405120u.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-52E1-2
Zusammenfassung
The reactions of small cationic platinum clusters (Pt2+–Pt7+) with molecular hydrogen were investigated, and the structures of the hydride complexes were analyzed using IR spectroscopy. We determined the relative reaction rates for the addition of the first H2 molecule to the platinum clusters, and we report the hydrogen saturation coverages observed at high H2 concentration. High H atom per Pt atom ratios were observed, similar to earlier measurements on other group-10 transition metals. The structures of the fully saturated complexes of Pt2+–Pt5+ were investigated using a combination of infrared multiple-photon dissociation (IR-MPD) spectroscopy in the frequency range of 550–2050 cm-1 and density functional theory-based calculations. We found molecularly bound hydrogen alongside bridge and often atop binding of hydrogen atoms for all of the low-energy structures, in contrast to earlier theoretical predictions.