English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-quality multi-GeV electron bunches via cyclotron autoresonance

MPS-Authors
/persons/resource/persons37681

Galow,  Benjamin Joachim
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons37921

Li,  Jiang-Xing
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

/persons/resource/persons30970

Salamin,  Yousef I.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
Department of Physics, American University of Sharjah, POB 26666, Sharjah, United Arab Emirates;

/persons/resource/persons30565

Harman,  Zoltan
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;
ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt, Germany;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society,;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1307.1814.pdf
(Preprint), 562KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Galow, B. J., Li, J.-X., Salamin, Y. I., Harman, Z., & Keitel, C. H. (2013). High-quality multi-GeV electron bunches via cyclotron autoresonance. Physical Review Special Topics-Accelerators and Beams, 16(8): 081302, pp. 1-6. doi:10.1103/PhysRevSTAB.16.081302.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-4FC7-8
Abstract
Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used.