de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A compact hexapole state-selector for NO radicals

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21723

Kirste,  Moritz
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21587

Haak,  Henrik
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21859

Meijer,  Gerard
Molecular Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21858

Meerakker,  Sebastiaan Y. T. van de
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Radboud University Nijmegen, Institute for Molecules and Materials;

Locator
There are no locators available
Fulltext (public)

Kirste-rsi-paper-hexapole.pdf
(Any fulltext), 2MB

1.4812267.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kirste, M., Haak, H., Meijer, G., & Meerakker, S. Y. T. v. d. (2013). A compact hexapole state-selector for NO radicals. Review of Scientific Instruments, 84(7): 073113. doi:10.1063/1.4812267.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-4E2E-A
Abstract
Focusing of molecular beams using an electrostatic hexapole is a mature technique to produce samples of state-selected molecules. The ability to efficiently focus molecules depends on the properties of the molecular species of interest, the length of the hexapole state selector, as well as on the maximum electric field strength that can be achieved in these devices. In particular for species with a small effective dipole moment such as nitric oxide (NO), hexapole state selectors of several meters in length are required to focus the beam. We report on a novel design for an electrostatic hexapole state-selector that allows for a maximum electric field strength of 260 kV/cm, reducing significantly the length of the hexapole that is required to focus the beam. We demonstrate the focusing of a molecular beam of NO radicals (X 2Π1/2, v = 0, J = 1/2, f) using a hexapole of only 30 cm length. A beamstop is integrated inside the hexapole at the geometric center of the device where the molecular trajectories have the largest deviation from the beam axis, effectively blocking the carrier gas of the molecular beam at minimum loss of NO density. The performance of the hexapole state-selector is investigated by state-selective laser induced fluorescence detection, as well as by two-dimensional imaging of the focused packet of NO radicals. The resulting packet of NO radicals has a density of 9 ± 3 × 1010 cm-3 and a state purity of 99%