Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-precision atomic mass measurements for a CKM unitarity test

MPG-Autoren
/persons/resource/persons81057

Eronen,  Tommi
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
University of Jyväskylä, Finland / Department of Physics;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Eronen, T., & Jokinen, A. (2013). High-precision atomic mass measurements for a CKM unitarity test. International Journal of Mass Spectrometry, 349-350, 69-73. doi:10.1016/j.ijms.2013.03.003.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-50A7-7
Zusammenfassung
The Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing matrix describes the transformation of quarks from weak-force eigenstates to mass eigenstates. The most contributing element in this matrix is the up-down matrix element Vud, derived in most precise way from the nuclear beta decays and in particular, from decays having superallowed 0+ → 0+ decay branch. What high-precision mass spectrometry community can offer are decay energies of such decays derived from parent–daughter mass differences, which are ideally, and in almost all cases, determined with Penning trap mass spectrometry directly from parent–daughter cyclotron frequency ratio. Typically frequency (and thus mass) ratios are determined with 10−9 relative precision, which allows decay energies to be determined within 100 eV-level. The Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing matrix describes the transformation of quarks from weak-force eigenstates to mass eigenstates. The most contributing element in this matrix is the up-down matrix element Vud, derived in most precise way from the nuclear beta decays and in particular, from decays having superallowed 0+ → 0+ decay branch. What high-precision mass spectrometry community can offer are decay energies of such decays derived from parent–daughter mass differences, which are ideally, and in almost all cases, determined with Penning trap mass spectrometry directly from parent–daughter cyclotron frequency ratio. Typically frequency (and thus mass) ratios are determined with 10−9 relative precision, which allows decay energies to be determined within 100 eV-level.