de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Photosynthetic sensitivity to drought varies among populations of Quercus ilex along a rainfall gradient

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Martin-StPaul, N. K., Limousin, J.-M., Rodríguez-Calcerrada, J., Ruffault, J., Rambal, S., Letts, M. G., et al. (2011). Photosynthetic sensitivity to drought varies among populations of Quercus ilex along a rainfall gradient. Functional Plant Biology, 39, 25-37. doi:10.1071/FP11090.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-4DBA-7
Zusammenfassung
Drought frequency and intensity are expected to increase in the Mediterranean as a consequence of global climate change. To understand how photosynthetic capacity responds to long-term water stress, we measured seasonal patterns of stomatal (SL), mesophyll (MCL) and biochemical limitations (BL) to net photosynthesis (Amax) in three Quercus ilex (L.) populations from sites differing in annual rainfall. In the absence of water stress, stomatal conductance (gs), maximum carboxylation capacity (Vcmax), photosynthetic electron transport rate (Jmax) and Amax were similar among populations. However, as leaf predawn water potential (Yl,pd) declined, the population from the wettest site showed steeper declines in gs, Vcmax, Jmax and Amax than those from the drier sites. Consequently, SL, MCL and BL increased most steeply in response to decreasingYl,pd in the population from the wettest site. The higher sensitivity ofAmax to drought was primarily the result of stronger stomatal regulation of water loss. Among-population differences were not observed when gs was used instead ofYl,pd as a drought stress indicator. Given that higher growth rates, stature and leaf area index were observed at the wettest site, we speculate that hydraulic architecture may explain the greater drought sensitivity of this population. Collectively, these results highlight the importance of considering among-population differences in photosynthetic responses to seasonal drought in large scale process-based models of forest ecosystem function.