de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Trend-preserving blending of passive and active microwave soil moisture retrievals

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W., McCabe, M. F., et al. (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 123, 280-297. doi:10.1016/j.rse.2012.03.014.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-4B0E-8
Zusammenfassung
A series of satellite-based passive and active microwave instruments provide soil moisture retrievals spanning altogether more than three decades. This offers the opportunity to generate a combined product that incorporates the advantages of both microwave techniques and spans the observation period starting 1979. However, there are several challenges in developing such a dataset, e.g., differences in instrument specifications result in different absolute soil moisture values, the global passive and active microwave retrieval methods produce conceptually different quantities, and products vary in their relative performances depending on vegetation density. This paper presents an approach for combining four passive microwave products from the VU University Amsterdam/National Aeronautics and Space Administration and two active microwave products from the Vienna University of Technology. First, passive microwave soilmoisture retrievals fromthe ScanningMultichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission microwave imager (TMI) instruments were scaled to the climatology of the Advanced Microwave Scanning Radiometer — Earth Observing System (AMSR-E) derived product and then all four were combined into a single merged passive microwave product. Second, active microwave soil moisture estimates from the European Remote Sensing (ERS) Scatterometer instrument were scaled to the climatology of the Advanced Scatterometer (ASCAT) derived estimates. Both were combined into a merged active microwave product. Finally, the two merged products were rescaled to a common globally available reference soilmoisture dataset provided by a land surfacemodel (GLDAS-1-Noah) and then blended into a single passive/active product. Blending of the active and passive data setswas based on their respective sensitivity to vegetation density.While this three step approach imposes the absolute values of the land surface model dataset to the final product, it preserves the relative dynamics (e.g., seasonality and inter-annual variations) of the original satellite derived retrievals.More importantly, the long term changes evident in the original soilmoisture productswere also preserved. The method presented in this paper allows the long term product to be extended with data from other current and future operational satellites. The multi-decadal blended dataset is expected to enhance our basic understanding of soil moisture in the water, energy and carbon cycles