de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

A faster 11/6-approximation algorithm for the Steiner tree problem in graphs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45793

Zelikovsky,  Alexander
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

MPI-I-92-122.pdf
(Any fulltext), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zelikovsky, A.(1992). A faster 11/6-approximation algorithm for the Steiner tree problem in graphs (MPI-I-92-122). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-B6F7-8
Abstract
The Steiner problem requires a shortest tree spanning a given vertex subset $S$ within graph $G=(V,E)$. There are two 11/6-approximation algorithms with running time $O(VE+VS^2+S^4)$ and $O(VE+VS^2+S^{3+{1\over 2}})$, respectively. Now we decrease the implementation time to $O(ES+VS^2+VlogV)$.