# Item

ITEM ACTIONSEXPORT

Released

Report

#### MOD m gates do not help on the ground floor

##### MPS-Authors

##### Locator

There are no locators available

##### Fulltext (public)

MPI-I-93-142.pdf

(Any fulltext), 11MB

##### Supplementary Material (public)

There is no public supplementary material available

##### Citation

Grolmusz, V.(1993). *MOD m gates do not help on the ground floor*
(MPI-I-93-142). Saarbrücken: Max-Planck-Institut für Informatik.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-B758-8

##### Abstract

We prove that any depth--3 circuit with MOD m gates of unbounded fan-in on the lowest level, AND gates on the second, and a weighted threshold gate on the top
needs either exponential size or exponential weights to compute the {\it inner product} of two vectors of length $n$ over GF(2). More exactly we prove that $\Omega(n\log n)\leq \log w\log M$, where $w$ is the sum of the absolute values of the weights, and $M$ is the maximum fan--in of the AND gates on level 2. Setting all weights to 1, we got a trade--off between the logarithms of the top--fan--in and the maximum fan--in on level 2.
In contrast, with $n$ AND gates at the bottom and {\it a single} MOD 2 gate at the top one can compute the {\it inner product} function.
The lower--bound proof does not use any monotonicity or uniformity assumptions, and all of our gates have unbounded fan--in. The key step in the proof is a {\it random} evaluation protocol of a circuit with MOD $m$ gates.