de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A lower bound for linear approximate compaction

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44233

Chaudhuri,  Shiva
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-93-146.pdf
(beliebiger Volltext), 10MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chaudhuri, S.(1993). A lower bound for linear approximate compaction (MPI-I-93-146). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-B761-1
Zusammenfassung
The {\em $\lambda$-approximate compaction} problem is: given an input array of $n$ values, each either 0 or 1, place each value in an output array so that all the 1's are in the first $(1+\lambda)k$ array locations, where $k$ is the number of 1's in the input. $\lambda$ is an accuracy parameter. This problem is of fundamental importance in parallel computation because of its applications to processor allocation and approximate counting. When $\lambda$ is a constant, the problem is called {\em Linear Approximate Compaction} (LAC). On the CRCW PRAM model, %there is an algorithm that solves approximate compaction in $\order{(\log\log n)^3}$ time for $\lambda = \frac{1}{\log\log n}$, using $\frac{n}{(\log\log n)^3}$ processors. Our main result shows that this is close to the best possible. Specifically, we prove that LAC requires %$\Omega(\log\log n)$ time using $\order{n}$ processors. We also give a tradeoff between $\lambda$ and the processing time. For $\epsilon < 1$, and $\lambda = n^{\epsilon}$, the time required is $\Omega(\log \frac{1}{\epsilon})$.