de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Synthesizing semantics for extensions of propositional logic

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45140

Ohlbach,  Hans Jürgen
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-94-225.pdf
(beliebiger Volltext), 256KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ohlbach, H. J.(1994). Synthesizing semantics for extensions of propositional logic (MPI-I-94-225). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-B5A8-4
Zusammenfassung
Given a Hilbert style specification of a propositional extension of standard propositional logic, it is shown how the basic model theoretic semantics can be obtained from the axioms by syntactic transformations. The transformations are designed in such a way that they eliminate certain derived theorems from the Hilbert axiomatization by turning them into tautologies. The following transformations are considered. Elimination of the reflexivity and transitivity of a binary consequence relation yields the basic possible worlds framework. Elimination of the congruence properties of the connectives yields weak neighbourhood semantics. Elimination of certain monotonicity properties yields a stronger neighbourhood semantics. Elimination of certain closure properties yields relational possible worlds semantics for the connectives. If propositional logic is the basis of the specification, the translated Hilbert axioms can be simplified by eliminating the formula variables with a quantifier elimination algorithm. This way we obtain the frame conditions for the semantic structures. All transformations work for arbitrary n-place connectives. The steps can be fully automated by means of PL1 theorem provers and quantifier elimination algorithms. The meta theory guarantees soundness and completeness of all transformation steps. As a by--product, translations into multi--modal logic are developed.