de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CO oxidation on metal-supported ultrathin oxide films: What makes them active?

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21849

Martynova,  Yulia
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Martynova, Y., Shaikhutdinov, S. K., & Freund, H.-J. (2013). CO oxidation on metal-supported ultrathin oxide films: What makes them active? ChemPhysChem, 5(8), 2162-2166. doi:10.1002/cctc.201300212.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-43B2-7
Abstract
It depends on O: The catalytic properties of ultrathin oxide films are studied by using the low-temperature oxidation of CO as a benchmark reaction. The results reveal a strong correlation between the activity and the desorption energy of the most weakly bound oxygen species present on these films under net oxidizing conditions at near-atmospheric pressures. The results suggest the use of oxygen binding energy as a suitable descriptor for the reaction.