de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

A polylog-time and $O(n\sqrt\lg n)$-work parallel algorithm for finding the row minima in totally monotone matrices

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44170

Bradford,  Phillip Gnassi
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44431

Fleischer,  Rudolf
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45509

Smid,  Michiel
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

MPI-I-95-1-006.pdf
(Any fulltext), 107KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bradford, P. G., Fleischer, R., & Smid, M.(1995). A polylog-time and $O(n\sqrt\lg n)$-work parallel algorithm for finding the row minima in totally monotone matrices (MPI-I-1995-1-006). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-A75F-8
Abstract
We give a parallel algorithm for computing all row minima in a totally monotone $n\times n$ matrix which is simpler and more work efficient than previous polylog-time algorithms. It runs in $O(\lg n \lg\lg n)$ time doing $O(n\sqrt{\lg n})$ work on a {\sf CRCW}, in $O(\lg n (\lg\lg n)^2)$ time doing $O(n\sqrt{\lg n})$ work on a {\sf CREW}, and in $O(\lg n\sqrt{\lg n \lg\lg n})$ time doing $O(n\sqrt{\lg n\lg\lg n})$ work on an {\sf EREW}.