de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Sorting in linear time?

MPG-Autoren

Andersson,  A.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Nilsson,  S.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Hagerup,  Torben
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Raman,  Rajeev
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-95-1-024.pdf
(beliebiger Volltext), 23MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Andersson, A., Nilsson, S., Hagerup, T., & Raman, R.(1995). Sorting in linear time? (MPI-I-1995-1-024). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A1DE-D
Zusammenfassung
We show that a unit-cost RAM with a word length of $w$ bits can sort $n$ integers in the range $0\Ttwodots 2^w-1$ in $O(n\log\log n)$ time, for arbitrary $w\ge\log n$, a significant improvement over the bound of $O(n\sqrt{\log n})$ achieved by the fusion trees of Fredman and Willard. Provided that $w\ge(\log n)^{2+\epsilon}$ for some fixed $\epsilon>0$, the sorting can even be accomplished in linear expected time with a randomized algorithm. Both of our algorithms parallelize without loss on a unit-cost PRAM with a word length of $w$ bits. The first one yields an algorithm that uses $O(\log n)$ time and\break $O(n\log\log n)$ operations on a deterministic CRCW PRAM. The second one yields an algorithm that uses $O(\log n)$ expected time and $O(n)$ expected operations on a randomized EREW PRAM, provided that $w\ge(\log n)^{2+\epsilon}$ for some fixed $\epsilon>0$. Our deterministic and randomized sequential and parallel algorithms generalize to the lexicographic sorting problem of sorting multiple-precision integers represented in several words.