English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle

MPS-Authors
/persons/resource/persons37279

Niemeier,  Ulrike
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37320

Schmidt,  Hauke       
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jgrd50896.pdf
(Publisher version), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Niemeier, U., Schmidt, H., Alterskjaer, K., & Kristjánsson, J. E. (2013). Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. Journal of Geophysical Research-Atmospheres, 118, 11905-11917. doi:10.1002/2013JD020445.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-CF0C-8
Abstract
Different techniques of solar radiation management (SRM) have been suggested to counteract global warming, among them the injection of sulfur into the stratosphere, mirrors in space, and marine cloud brightening through artificial emissions of sea salt. This study focuses on to what extent climate impacts of these three methods would be different. We present results from simulations with an Earth system model where the forcing from the increase of greenhouse gases in a transient scenario (RCP4.5) was balanced over 50 years by SRM. While global mean temperature increases slightly due to the inertia of the climate system and evolves similar with time for the different SRM methods, responses of global mean precipitation differ considerably among the methods. The hydrological sensitivity is decreased by SRM, most prominently for aerosol-based techniques, sea salt emissions, and injection of sulfate into the stratosphere. Reasons for these differences are discussed through an analysis of the surface energy budget. Furthermore, effects on large-scale tropical dynamics and on regional climate are discussed. Key Points First comparison of climate impacts of three climate engineering techniques Global precipitation decreases with all CE methods but differs between methods Impact on tropical dynamics depends on SRM method ©2013. American Geophysical Union. All Rights Reserved.