English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils

MPS-Authors
/persons/resource/persons62494

Muhr,  Jan
Tree Reserve Carbon Pools, Dr. J. Muhr, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hanke, A.., Cerli, C., Muhr, J., Borken, W., & Kalbitz, K. (2013). Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. European Journal of Soil Science, 64, 476-487. doi:10.1111/ejss.12042.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-31E0-E
Abstract
Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long-term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultivation. Non-paddy soils were used as references. We exposed soils to alternating redox conditions for 12weeks in incubation experiments. Carbon mineralization of paddy soils was independent of redox conditions. Anoxic conditions caused increasing DOC concentrations for paddy soils, probably because of desorption induced by increasing pH. We assume desorption released older, previously stabilized carbon, which then was respired by a microbial community well adapted to anoxic conditions. This assumption is supported by the 14C signatures of respired CO2, indicating larger mineralization of older carbon under anoxic than under oxic conditions. The increasing DOC concentrations under anoxic conditions did not result in an equivalent increase in carbon mineralization, possibly because of little reducible iron oxide. Therefore, net DOC and CO2 production were not positively related under anoxic conditions. The overall 20–75% smaller carbon mineralization of paddy soils than of non-paddy soils resulted from less respiration under oxic conditions. We conclude that carbon accumulation in paddy as well as in other wetland soils results from a microbial community well adapted to anoxic conditions, but less efficient in mineralizing carbon during transient oxic periods. Carbon accumulation might be even larger when mineralization under anoxic conditions is restricted by a lack of alternative electron acceptors.