de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Discovering all most specific sentences by randomized algorithms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44545

Gunopulos,  Dimitrios
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44982

Mannila,  Heikki
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45339

Saluja,  Sanjeev
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1996-1-023
(beliebiger Volltext), 10KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gunopulos, D., Mannila, H., & Saluja, S.(1996). Discovering all most specific sentences by randomized algorithms (MPI-I-1996-1-023). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A109-B
Zusammenfassung
Data mining can in many instances be viewed as the task of computing a representation of a theory of a model or of a database. In this paper we present a randomized algorithm that can be used to compute the representation of a theory in terms of the most specific sentences of that theory. In addition to randomization, the algorithm uses a generalization of the concept of hypergraph transversals. We apply the general algorithm in two ways, for the problem of discovering maximal frequent sets in 0/1 data, and for computing minimal keys in relations. We present some empirical results on the performance of these methods on real data. We also show some complexity theoretic evidence of the hardness of these problems.