de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

On the complexity of computing evolutionary trees

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44478

Gasieniec,  Leszek
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1996-1-031
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gasieniec, L., Jansson, J., Lingas, A., & Östlin, A.(1996). On the complexity of computing evolutionary trees (MPI-I-1996-1-031). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A01E-5
Zusammenfassung
In this paper we study a few important tree optimization problems with applications to computational biology. These problems ask for trees that are consistent with an as large part of the given data as possible. We show that the maximum homeomorphic agreement subtree problem cannot be approximated within a factor of $N^{\epsilon}$, where $N$ is the input size, for any $0 \leq \epsilon < \frac{1}{18}$ in polynomial time, unless P=NP. On the other hand, we present an $O(N\log N)$-time heuristic for the restriction of this problem to instances with $O(1)$ trees of height $O(1)$, yielding solutions within a constant factor of the optimum. We prove that the maximum inferred consensus tree problem is NP-complete and we provide a simple fast heuristic for it, yielding solutions within one third of the optimum. We also present a more specialized polynomial-time heuristic for the maximum inferred local consensus tree problem.