de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Labelled propositional modal logics: theory and practice

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44075

Basin,  David
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45002

Matthews,  Seán
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45670

Viganò,  Luca
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1996-2-002
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Basin, D., Matthews, S., & Viganò, L.(1996). Labelled propositional modal logics: theory and practice (MPI-I-1996-2-002). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A40A-4
Zusammenfassung
We show how labelled deductive systems can be combined with a logical framework to provide a natural deduction implementation of a large and well-known class of propositional modal logics (including $K$, $D$, $T$, $B$, $S4$, $S4.2$, $KD45$, $S5$). Our approach is modular and based on a separation between a base logic and a labelling algebra, which interact through a fixed interface. While the base logic stays fixed, different modal logics are generated by plugging in appropriate algebras. This leads to a hierarchical structuring of modal logics with inheritance of theorems. Moreover, it allows modular correctness proofs, both with respect to soundness and completeness for semantics, and faithfulness and adequacy of the implementation. We also investigate the tradeoffs in possible labelled presentations: We show that a narrow interface between the base logic and the labelling algebra supports modularity and provides an attractive proof-theory (in comparision to, e.g., semantic embedding) but limits the degree to which we can make use of extensions to the labelling algebra.