de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

A parallel priority queue with constant time operations

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44187

Brodal,  Gerth Stølting
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45632

Träff,  Jesper Larsson
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45787

Zaroliagis,  Christos
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1997-1-011
(Any fulltext), 11KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Brodal, G. S., Träff, J. L., & Zaroliagis, C.(1997). A parallel priority queue with constant time operations (MPI-I-1997-1-011). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-9E19-D
Abstract
We present a parallel priority queue that supports the following operations in constant time: {\em parallel insertion\/} of a sequence of elements ordered according to key, {\em parallel decrease key\/} for a sequence of elements ordered according to key, {\em deletion of the minimum key element}, as well as {\em deletion of an arbitrary element}. Our data structure is the first to support multi insertion and multi decrease key in constant time. The priority queue can be implemented on the EREW PRAM, and can perform any sequence of $n$ operations in $O(n)$ time and $O(m\log n)$ work, $m$ being the total number of keys inserted and/or updated. A main application is a parallel implementation of Dijkstra's algorithm for the single-source shortest path problem, which runs in $O(n)$ time and $O(m\log n)$ work on a CREW PRAM on graphs with $n$ vertices and $m$ edges. This is a logarithmic factor improvement in the running time compared with previous approaches.