de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Exploring unknown environments

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons43989

Albers,  Susanne
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1997-1-017
(beliebiger Volltext), 10KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Albers, S., & Henzinger, M. R.(1997). Exploring unknown environments (MPI-I-1997-1-017). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-9D82-5
Zusammenfassung
We consider exploration problems where a robot has to construct a complete map of an unknown environment. We assume that the environment is modeled by a directed, strongly connected graph. The robot's task is to visit all nodes and edges of the graph using the minimum number $R$ of edge traversals. Koutsoupias~\cite{K} gave a lower bound for $R$ of $\Omega(d^2 m)$, and Deng and Papadimitriou~\cite{DP} showed an upper bound of $d^{O(d)} m$, where $m$ is the number edges in the graph and $d$ is the minimum number of edges that have to be added to make the graph Eulerian. We give the first sub-exponential algorithm for this exploration problem, which achieves an upper bound of $d^{O(\log d)} m$. We also show a matching lower bound of $d^{\Omega(\log d)}m$ for our algorithm. Additionally, we give lower bounds of $2^{\Omega(d)}m$, resp.\ $d^{\Omega(\log d)}m$ for various other natural exploration algorithms.