de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Toward assimilation of observation-derived mixing heights to improve atmospheric tracer transport models

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62450

Kretschmer,  Roberto
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62441

Koch,  Frank-Thomas
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62373

Feist,  Dietrich G.
Atmospheric Remote Sensing Group, Dr. D. Feist, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62335

Biavati,  Gionata
Atmospheric Remote Sensing Group, Dr. D. Feist, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62430

Karstens,  Ute
Regional Scale Modelling of Atmospheric Trace Gases, Dr. U. Karstens, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62381

Gerbig,  Christoph
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kretschmer, R., Koch, F.-T., Feist, D. G., Biavati, G., Karstens, U., & Gerbig, C. (2013). Toward assimilation of observation-derived mixing heights to improve atmospheric tracer transport models. In J. Lin, D. Brunner, C. Gerbig, A. Stohl, A. Luhar, & P. Webley (Eds.), Lagrangian Modeling of the Atmosphere (pp. 185-205). Washington: Americ. Geophysical. Union. doi:10.1029/2012GM001255.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-17A9-B
Abstract
Common transport models use the mixing height (MH) to determine turbulent coefficients and to obtain tracer concentrations in the planetary boundary layer (PBL). We conducted a pseudo data experiment to elucidate the impact of assimilating MHs to improve CO2 transport within the Stochastic Time-Inverted Lagrangian Transport model (STILT). Transport of CO2 was simulated for August 2006 with a receptor located at Bialystok, Poland. STILT was driven by meteorology obtained from the Weather Research and Forecasting (WRF) model, using the Yonsei University (YSU) and Mellor-Yamada-Janjić (MYJ) PBL parameterizations, which differ substantially in the produced MHs. To quantify model-data mismatch in CO2 to errors in vertical mixing, we defined the WRF-YSU simulation as known truth. Pseudo MH observations were sampled from WRF-YSU at locations of real radiosonde stations. These point observations were interpolated in space-time to the entire WRF domain using kriging with an external drift, which combines observed and modeled MHs to create a “best guess” MH field. We prescribed MHs in STILT driven by WRF-MYJ winds with the best guess to study the impact on CO2 concentrations. Differences in CO2 between the STILT simulations were on the order of ~0–1 and ~1–10 ppm on average (i.e., bias), with standard deviations of ~1–3 and ~4–14 ppm (random error) during day (12 UTC) and nighttime (0 UTC), respectively. These were reduced when using STILT with the best guess (~50%–80% of the bias, ~10%–20% of the random error). Simulated CO2 concentrations and MHs were also compared to measurements made at the Bialystok tall tower.