de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A practical minimum spanning tree algorithm using the cycle property

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44744

Katriel,  Irit
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45344

Sanders,  Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45632

Träff,  Jesper Larsson
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2002-1-003
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Katriel, I., Sanders, P., & Träff, J. L.(2002). A practical minimum spanning tree algorithm using the cycle property (MPI-I-2002-1-003). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-6C98-2
Zusammenfassung
We present a simple new algorithm for computing minimum spanning trees that is more than two times faster than the best previously known algorithms (for dense, ``difficult'' inputs). It is of conceptual interest that the algorithm uses the property that the heaviest edge in a cycle can be discarded. Previously this has only been exploited in asymptotically optimal algorithms that are considered to be impractical. An additional advantage is that the algorithm can greatly profit from pipelined memory access. Hence, an implementation on a vector machine is up to 13 times faster than previous algorithms. We outline additional refinements for MSTs of implicitly defined graphs and the use of the central data structure for querying the heaviest edge between two nodes in the MST. The latter result is also interesting for sparse graphs.