de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

On the Bollob\'as -- Eldridge conjecture for bipartite graphs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44270

Csaba,  Bela
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

2003-1-009
(Any fulltext), 10KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Csaba, B.(2003). On the Bollob\'as -- Eldridge conjecture for bipartite graphs (MPI-I-2003-1-009). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6B3A-F
Abstract
Let $G$ be a simple graph on $n$ vertices. A conjecture of Bollob\'as and Eldridge~\cite{be78} asserts that if $\delta (G)\ge {kn-1 \over k+1}$ then $G$ contains any $n$ vertex graph $H$ with $\Delta(H) = k$. We strengthen this conjecture: we prove that if $H$ is bipartite, $3 \le \Delta(H)$ is bounded and $n$ is sufficiently large , then there exists $\beta >0$ such that if $\delta (G)\ge {\Delta \over {\Delta +1}}(1-\beta)n$, then $H \subset G$.