de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A linear time heuristic for the branch-decomposition of planar graphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45588

Tamaki,  Hisao
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2003-1-010
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tamaki, H.(2003). A linear time heuristic for the branch-decomposition of planar graphs (MPI-I-2003-1-010). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-6B37-6
Zusammenfassung
Let $G$ be a biconnected planar graph given together with its planar drawing. A {\em face-vertex walk} in $G$ of length $k$ is an alternating sequence $x_0, \ldots x_k$ of vertices and faces (i.e., if $x_{i - 1}$ is a face then $x_i$ is a vertex and vice versa) such that $x_{i - 1}$ and $x_i$ are incident with each other for $1 \leq i \leq k$. For each vertex or face $x$ of $G$, let $\alpha_x$ denote the length of the shortest face-vertex walk from the outer face of $G$ to $x$. Let $\alpha_G$ denote the maximum of $\alpha_x$ over all vertices/faces $x$. We show that there always exits a branch-decomposition of $G$ with width $\alpha_G$ and that such a decomposition can be constructed in linear time. We also give experimental results, in which we compare the width of our decomposition with the optimal width and with the width obtained by some heuristics for general graphs proposed by previous researchers, on test instances used by those researchers. On 56 out of the total 59 test instances, our method gives a decomposition within additive 2 of the optimum width and on 33 instances it achieves the optimum width.