de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

A flexible and versatile studio for synchronized multi-view video recording

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44925

Li,  Ming
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44965

Magnor,  Marcus A.
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

2003-4-002
(Any fulltext), 11KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Theobalt, C., Li, M., Magnor, M. A., & Seidel, H.-P.(2003). A flexible and versatile studio for synchronized multi-view video recording (MPI-I-2003-4-002). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6AF2-6
Abstract
In recent years, the convergence of Computer Vision and Computer Graphics has put forth new research areas that work on scene reconstruction from and analysis of multi-view video footage. In free-viewpoint video, for example, new views of a scene are generated from an arbitrary viewpoint in real-time from a set of real multi-view input video streams. The analysis of real-world scenes from multi-view video to extract motion information or reflection models is another field of research that greatly benefits from high-quality input data. Building a recording setup for multi-view video involves a great effort on the hardware as well as the software side. The amount of image data to be processed is huge, a decent lighting and camera setup is essential for a naturalistic scene appearance and robust background subtraction, and the computing infrastructure has to enable real-time processing of the recorded material. This paper describes the recording setup for multi-view video acquisition that enables the synchronized recording of dynamic scenes from multiple camera positions under controlled conditions. The requirements to the room and their implementation in the separate components of the studio are described in detail. The efficiency and flexibility of the room is demonstrated on the basis of the results that we obtain with a real-time 3D scene reconstruction system, a system for non-intrusive optical motion capture and a model-based free-viewpoint video system for human actors. ~