de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

On fast construction of spatial hierarchies for ray tracing

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44596

Havran,  Vlastimil
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44618

Herzog,  Robert
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-2006-4-004.ps
(beliebiger Volltext), 10MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Havran, V., Herzog, R., & Seidel, H.-P.(2006). On fast construction of spatial hierarchies for ray tracing (MPI-I-2006-4-004). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-6807-8
Zusammenfassung
In this paper we address the problem of fast construction of spatial hierarchies for ray tracing with applications in animated environments including non-rigid animations. We discuss properties of currently used techniques with $O(N \log N)$ construction time for kd-trees and bounding volume hierarchies. Further, we propose a hybrid data structure blending between a spatial kd-tree and bounding volume primitives. We keep our novel hierarchical data structures algorithmically efficient and comparable with kd-trees by the use of a cost model based on surface area heuristics. Although the time complexity $O(N \log N)$ is a lower bound required for construction of any spatial hierarchy that corresponds to sorting based on comparisons, using approximate method based on discretization we propose a new hierarchical data structures with expected $O(N \log\log N)$ time complexity. We also discuss constants behind the construction algorithms of spatial hierarchies that are important in practice. We document the performance of our algorithms by results obtained from the implementation tested on nine different scenes.