de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Skeleton-driven Laplacian Mesh Deformations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44112

Belyaev,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45777

Yoshizawa,  Shin
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

reportMPI-I-2006-4-005.ps
(beliebiger Volltext), 31MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Belyaev, A., Yoshizawa, S., & Seidel, H.-P.(2006). Skeleton-driven Laplacian Mesh Deformations (MPI-I-2006-4-005). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-67FF-6
Zusammenfassung
In this report, a new free-form shape deformation approach is proposed. We combine a skeleton-driven mesh deformation technique with discrete differential coordinates in order to create natural-looking global shape deformations. Given a triangle mesh, we first extract a skeletal mesh, a two-sided Voronoi-based approximation of the medial axis. Next the skeletal mesh is modified by free-form deformations. Then a desired global shape deformation is obtained by reconstructing the shape corresponding to the deformed skeletal mesh. The reconstruction is based on using discrete differential coordinates. Our method preserves fine geometric details and original shape thickness because of using discrete differential coordinates and skeleton-driven deformations. We also develop a new mesh evolution technique which allow us to eliminate possible global and local self-intersections of the deformed mesh while preserving fine geometric details. Finally, we present a multiresolution version of our approach in order to simplify and accelerate the deformation process.