de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Combining linguistic and statistical analysis to extract relations from web documents

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45572

Suchanek,  Fabian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44668

Ifrim,  Georgiana
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

MPI-I-2006-5-004.pdf
(Any fulltext), 191KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Suchanek, F., Ifrim, G., & Weikum, G.(2006). Combining linguistic and statistical analysis to extract relations from web documents (MPI-I-2006-5-004). Saarbrücken: Max-Planck-Institut für Informatik.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-6710-9
Abstract
Search engines, question answering systems and classification systems alike can greatly profit from formalized world knowledge. Unfortunately, manually compiled collections of world knowledge (such as WordNet or the Suggested Upper Merged Ontology SUMO) often suffer from low coverage, high assembling costs and fast aging. In contrast, the World Wide Web provides an endless source of knowledge, assembled by millions of people, updated constantly and available for free. In this paper, we propose a novel method for learning arbitrary binary relations from natural language Web documents, without human interaction. Our system, LEILA, combines linguistic analysis and machine learning techniques to find robust patterns in the text and to generalize them. For initialization, we only require a set of examples of the target relation and a set of counterexamples (e.g. from WordNet). The architecture consists of 3 stages: Finding patterns in the corpus based on the given examples, assessing the patterns based on probabilistic confidence, and applying the generalized patterns to propose pairs for the target relation. We prove the benefits and practical viability of our approach by extensive experiments, showing that LEILA achieves consistent improvements over existing comparable techniques (e.g. Snowball, TextToOnto).