de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A neighborhood-based approach for clustering of linked document collections

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44021

Angelova,  Ralitsa
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45482

Siersdorfer,  Stefan
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-2006-5-005.pdf
(beliebiger Volltext), 548KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Angelova, R., & Siersdorfer, S.(2006). A neighborhood-based approach for clustering of linked document collections (MPI-I-2006-5-005). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-670D-4
Zusammenfassung
This technical report addresses the problem of automatically structuring linked document collections by using clustering. In contrast to traditional clustering, we study the clustering problem in the light of available link structure information for the data set (e.g., hyperlinks among web documents or co-authorship among bibliographic data entries). Our approach is based on iterative relaxation of cluster assignments, and can be built on top of any clustering algorithm (e.g., k-means or DBSCAN). These techniques result in higher cluster purity, better overall accuracy, and make self-organization more robust. Our comprehensive experiments on three different real-world corpora demonstrate the benefits of our approach.