de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Generalized intrinsic symmetry detection

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44123

Berner,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44158

Bokeloh,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-2009-4-005.pdf
(beliebiger Volltext), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Berner, A., Bokeloh, M., Wand, M., Schilling, A., & Seidel, H.-P.(2009). Generalized intrinsic symmetry detection (MPI-I-2009-4-005). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-666B-3
Zusammenfassung
In this paper, we address the problem of detecting partial symmetries in 3D objects. In contrast to previous work, our algorithm is able to match deformed symmetric parts: We first develop an algorithm for the case of approximately isometric deformations, based on matching graphs of surface feature lines that are annotated with intrinsic geometric properties. The sensitivity to non-isometry is controlled by tolerance parameters for each such annotation. Using large tolerance values for some of these annotations and a robust matching of the graph topology yields a more general symmetry detection algorithm that can detect similarities in structures that have undergone strong deformations. This approach for the first time allows for detecting partial intrinsic as well as more general, non-isometric symmetries. We evaluate the recognition performance of our technique for a number synthetic and real-world scanner data sets.