English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Greiner, S., Wang, X., Herrmann, R. G., Rauwolf, U., Mayer, K., Haberer, G., et al. (2008). The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data. Molecular Biology and Evolution, 25(9), 2019-2030. doi:10.1093/molbev/msn149.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-332C-7
Abstract
A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus-organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I-V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome-genome combinations that do not occur naturally often display interspecific plastome-genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome-genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/ Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity.