de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

The mutual information: Detecting and evaluating dependencies between variables

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97117

Daub,  C. O.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97409

Selbig,  J.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Steuer, R., Kurths, J., Daub, C. O., Weise, J., & Selbig, J. (2002). The mutual information: Detecting and evaluating dependencies between variables. In European Conference on Computational Biology (ECCB 2002) (pp. S231-S240).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-2E79-B
Abstract
Motivation: Clustering co-expressed genes usually requires the definition of `distance' or `similarity' between measured datasets, the most common choices being Pearson correlation or Euclidean distance. With the size of available datasets steadily increasing, it has become feasible to consider other, more general, definitions as well. One alternative, based on information theory, is the mutual information, providing a general measure of dependencies between variables. While the use of mutual information in cluster analysis and visualization of large-scale gene expression data has been suggested previously, the earlier studies did not focus on comparing different algorithms to estimate the mutual information from finite data. Results: Here we describe and review several approaches to estimate the mutual information from finite datasets. Our findings show that the algorithms used so far may be quite substantially improved upon. In particular when dealing with small datasets, finite sample effects and other sources of potentially misleading results have to be taken into account.