Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Regulation of sucrose to starch conversion in growing potato tubers

MPG-Autoren
/persons/resource/persons97163

Geigenberger,  P.
Storage Carbohydrate Metabolism, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Geigenberger, P. (2003). Regulation of sucrose to starch conversion in growing potato tubers. In Journal of Experimental Botany (pp. 457-465).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-2DF1-5
Zusammenfassung
Growing potato tubers have been used as a model system to investigate the regulation of starch synthesis. Results indicate that sucrose degradation and starch synthesis are controlled via regulatory signals in response to sucrose and oxygen availability. (i) Sucrose leads to a co-ordinated up-regulation of sucrose synthase and ADP-glucose phosphorylase at the transcriptional and post-transcriptional level. Transcriptional regulation of ADPglucose phosphorylase leads to rapid changes in transcript levels, but relatively slow changes in protein levels. The rapid regulation of this enzyme in response to sucrose is mediated by a novel mechansism, involving redox-activation of ADPGlc pyrophosphorylase. Sucrose synthase is regulated via transcriptional regulation, but again the resulting changes in enzyme activity occur relatively slowly. More rapid changes in the flux of this enzyme follow due to rapid changes in the levels of uridine nucleotides. (ii) Internal oxygen concentrations fall to low levels in growing tubers, triggering a restriction of respiration, a decrease in the adenylate energy status, and a widespread decreased in metabolic and biosynthetic activity. These metabolic adaptations will allow oxygen consumption to be decreased and prevent the tissue from becoming anoxic. It will be discussed how these factors interact at different levels and different time-scales of control to regulate tuber metabolism in response to physiological and environmental inputs.