English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Species-specific analysis of protein sequence motifs using mutual information

MPS-Authors
/persons/resource/persons97205

Hummel,  J.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;
BioinformaticsCIG, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97471

Weckwerth,  W.
Integrative Proteomics and Metabolomics, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97409

Selbig,  J.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Hummel, J., Keshvari, N., Weckwerth, W., & Selbig, J. (2005). Species-specific analysis of protein sequence motifs using mutual information. BMC Bioinformatics, 6, 164. doi:10.1186/1471-2105-6-164.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-2BB1-3
Abstract
Background: Protein sequence motifs are by definition short fragments of conserved amino acids, often associated with a specific function. Accordingly protein sequence profiles derived from multiple sequence alignments provide an alternative description of functional motifs characterizing families of related sequences. Such profiles conveniently reflect functional necessities by pointing out proximity at conserved sequence positions as well as depicting distances at variable positions. Discovering significant conservation characteristics within the variable positions of profiles mirrors group-specific and, in particular, evolutionary features of the underlying sequences. Results: We describe the tool PROfile analysis based on Mutual Information (PROMI) that enables comparative analysis of user-classified protein sequences. PROMI is implemented as a web service using Perl and R as well as other publicly available packages and tools on the server-side. On the client-side platform-independence is achieved by generally applied internet delivery standards. As one possible application analysis of the zinc finger C2H2-type protein domain is introduced to illustrate the functionality of the tool. Conclusion: The web service PROMI should assist researchers to detect evolutionary correlations in protein profiles of defined biological sequences. It is available at http://promi.mpimpgolm. mpg.de where additional documentation can be found.