Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response

MPG-Autoren
/persons/resource/persons97117

Daub,  C. O.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97193

Hesse,  H.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97481

Willmitzer,  L.
Small Molecules, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97197

Hoefgen,  R.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Nikiforova-2005-Integrative gene-met.pdf
(beliebiger Volltext), 801KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nikiforova, V. J., Daub, C. O., Hesse, H., Willmitzer, L., & Hoefgen, R. (2005). Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. Journal of Experimental Botany, 56(417), 1887-1896. doi:10.1093/jxb/eri179.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-2B5F-1
Zusammenfassung
The systematic accumulation of gene expression data, although revolutionary, is insufficient in itself for an understanding of system-level physiology. In the post-genomic era, the next cognitive step is linking genes to biological processes and assembling a mosaic of data into global models of biosystem function. A dynamic network of informational flows in Arabidopsis plants perturbed by sulphur depletion is presented here. With the use of an original protocol, the first blosystem response network was reconstructed from a time series of transcript and metabolite profiles, which, on the one hand, integrates complex metabolic and transcript data and, on the other hand, possesses a causal relationship. Using the informational fluxes within this reconstruction, it was possible to link system perturbation to response endpoints. Robustness and stress tolerance, as consequences of scale-free network topology, and hubs, as potential controllers of homeostasis maintenance, were revealed. Communication paths of propagating system excitement directed to physiological endpoints, such as anthocyanin accumulation and enforced root formation were dissected from the network. An auxin regulatory circuit involved in the control of a hypo-sulphur stress response was uncovered.