de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Non-linear PCA: a missing data approach

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97393

Scholz,  M.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97239

Kopka,  J.
Applied Metabolome Analysis, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97409

Selbig,  J.
BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Scholz-2005-Non-linear PCA_ a mi.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Scholz, M., Kaplan, F., Guy, C. L., Kopka, J., & Selbig, J. (2005). Non-linear PCA: a missing data approach. Bioinformatics, 21(20), 3887-3895. doi:10.1093/bioinformatics/bti634.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-2B1F-2
Zusammenfassung
Motivation: Visualizing and analysing the potential non-linear structure of a dataset is becoming an important task in molecular biology. This is even more challenging when the data have missing values. Results: Here, we propose an inverse model that performs non-linear principal component analysis (NLPCA) from incomplete datasets. Missing values are ignored while optimizing the model, but can be estimated afterwards. Results are shown for both artificial and experimental datasets. In contrast to linear methods, non-linear methods were able to give better missing value estimations for non-linear structured data. Application: We applied this technique to a time course of metabolite data from a cold stress experiment on the model plant Arabidopsis thaliana, and could approximate the mapping function from any time point to the metabolite responses. Thus, the inverse NLPCA provides greatly improved information for better understanding the complex response to cold stress.