English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Faithful transcription initiation from a mitochondrial promoter in transgenic plastids

MPS-Authors
/persons/resource/persons97364

Ruf,  S.
Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97077

Bock,  R.
Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Bohne, A. V., Ruf, S., Boerner, T., & Bock, R. (2007). Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Research, 35(21), 7256-7266. doi:10.1093/nar/gkm679.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-2958-0
Abstract
The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.